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Obtaining specific coupling and quantifying the biomoleecule = Scheme 1. Double-Labeling Approach
fluorophore ratio are important issues when coupling fluorophores ;2
to biomolecules for observation in biological assays and cells. In
the case of genetic constructs employing fluorescent protein labels,
the protein-label stoichiometry is intrinsically 1:1. Fluorescent
proteins, however, present the disadvantage of fast photobleaching. Cross-linker ) )

; : rotein Organic
In the past decade, luminescent nanoparticles (NPs), such as A, P fluorophore
guantum dots (QDs) and lanthanide-ion-doped oxide NPs have ’
therefore been used because of their extreme photostability
compared to organic labels? Given the NP size, a large number
of proteins or other biomolecules can be a_ttached to them. Ensem_ble We spincoated NR-bungarotoxin-Alexa488 conjugates on a
mgasurements have begn “Se‘?' to gua}ntlf.y the protein-NP C()Up!'ngsilica coverslip at low concentration allowing single particle
ratio but give no information on its distribution. Gel electrophoresis
was employed to separate QD-Rand NP-PEG conjugatésand
to determine the presence of protein-QD ratios of 0:1, 1:1, 2:1
and 3:1'2 The information obtained, however, remains qualitative

and often suffers from the overlap between the mobility shift bands Some NPs (4%) are not coupled with proteins as expected for a

of dlfgetretnht SEIEC"?S' Esgeil?\lllg n tfhe caie of pro:jelr_ls sf:n?” COM- poisson distribution, whereas the presence of Alexa emission spots
parel Ot eh ?lze arlh Od sutr ace ctarge aln Slz€ NELerogensy, e apsence of a corresponding NP emission can be attributed
gﬁ;:aeng rophoretic methods can turn out complex or even inap- , \io sizes too small to be detected1@ nm)1°

In this C icati double labeli h We then analyzed the fluorescence evolution of Alexa bright
n this --.ommunication, we propose a double 1abeling approac spots corresponding to protein-Alexa molecules attached to single
to determine the protein-NP stoichiomety the single particle

L . . NPs (Figure 2): we clearly observe stepwise photobleaching
level. We cou_pled lanthanide-ion doped oxide NP.S to a protein, indicating the presence of a low discrete number of fluorophores.
o-bungarotoxin, already labeled with an organic fluorophore

. ) e By simply counting the number of bleaching steps we precisely
(Alexa48s, Mole_cular Probes) W'.th all st0|ch|om_etry. We then measure the number of proteins per NP. Furthermore, a histogram
used the stepwise photobleaching of the organic fluorophores

P . . . of the initial Alexa count number shows multiple peaks (Figure
attached to |nd|_V|du_aI l\_lPs_to quantify the protein-NP ratio for each 3). The initial values of 140 and 900 counts in Figure 2 correspond
NP as well as its distribution.

Sinal lecule photobleachi f il h has b to the first and third peak of the histogram (one and three proteins
I'n.? ‘:’?“Otﬁcu € pt fo obleaching (; org?nlc;_ uorﬁ: ores ?S. een per NP) and are in agreement with our observation of one and three
th: O::selnnce ifpéz_cﬁgsnvjr;etyrz 2?&'2% '(:]?.i ! ti:sncer;ﬁg]rmg steps, respectively. Moreover, the mean initial count number for
of io% channel unit$? and recigjs% Igcaliz:;ltioun clJfgnuIti I; close- all Alexa spots presenting one, two, three, and four bleaching steps
. T P P is 191+ 109, 449+ 151, 665+ 260, and 11072 207, respectively,
lying fluorophorest>1” We here demonstrate that it allows . h . ) i
- : in agreement with the peaks observed in the histogram of Figure 3
quantification of the number of proteins per NP.

We implemented a functionalization scheme for2@ nm (see for which a multiple Gaussian fit gives 126 176, 486+ 29, 763

Figure S1 for the nanoparticle size distribution)duy 2VO4 NPs + 94, and 1266+ 87, respectively. The top left circle graph in

. i . . . . Figure 3 shows the distribution of Alexa molecules per NP as
involving a silica coating followed by an amino-organosilane layer determined from the surface under the Gaussians used to fit the
similar to that used for QD¥. We then used a homo- or hetero-

. . - . L histogram.
bifunctional cross-linker with two succinimidyl ester groups or one 9

S e N ) The mean initial count number for 379 Alexa emission spots in
succinimidyl ester and one maleimide group that can bind in a first : . . ) .
. ) . the single-particle measurements gives a ratio of #.9.5, in
step to the nanoparticle amine groups and in a second one to the

. . . “agreement with the ensemble result. The maximum of the coupling
protein amine or sulfhydryl groups (see Scheme 1 and Supporting .~ . =~ . . " . .
. ’ . . ) ratio distribution lies, however, at 3 proteins/NP (see Figure 3).
Information). By varying the protein concentration during the

. . . ~Indeed, the presence of large NPs coupled to a large number of
second coupling step, we obtained average protein-NP coupling roteins (Figure S2) leads to an average ratio determined from
ratios of 8+ 0.8, 0.854 0.04, and 0.3t 0.01, determined from P 9 )

. ensemble measurements that is higher than the maximum of the
ensemble measurements. Results on the sample with an averagé

o . . . coupling ratio distribution. (Similarly, in the case of organic acceptor
protein-NP ratio of 8 are shown in the following. molecules attached to QD donors, Pons &f demonstrated that

 Laboratoire d'Optique et Biosciences and INSERM U696. the smglc_a-partlcle fluorescgnce resonance energy transfer efficiency
* Laboratoire de Physique de la MateCondense may deviate from that obtained from ensemble measurements.) Our

siloxane
polymer

X=X _H.N
NH, 47 X—Y ™ 5 =

luminescent nanoparticle

observation and measured alternatively the NP (Figure 1A) and
the Alexa488 emission (Figure 1B) in pH 7.4 phosphate buffer.
" We observe 90% of matching between the bright spots in the NP
and in the Alexa image indicating efficient NP-protein coupling.
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Figure 1. Wide-field fluorescence microscopy images of individual NP-
o-bungarotoxin-Alexa488 conjugates spincoated on a coverslip: (left) image
of the NP emission at 617 nm (integration time, 500 ms; laser intensity,
2—3 kW/cn?); (right) image of the Alexa488 emission centered at 519 nm
(integration time, 30 ms; laser intensity, 6. kW/cn?). Scale bar= 5

um.
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Figure 2. Time evolution of a single Alexa emission spot showing three
(main figure) and one (inset) photobleaching steps. Blue lines help visualize
the steps. Integration time, 100 ms; laser intensity, 9@ kW/cn?.
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Figure 3. Histogram of the initial count number for 379 individual Alexa
emission spots. The solid line is the fit of the histogram for count numbers
0—2400 using 6 gaussians. Experimental conditions as in Figure 2. The
large count number part of the histogram is not shown. Circle graphs show
the distribution of Alexa molecules per NP, Alexa molecules per protein,

6000

In conclusion, we coupled lanthanide-ion doped oxide NPs to
proteins and measured the protein-NP coupling ratio at the single-
particle level and its distribution based on the stepwise photo-
bleaching and the initial emission of organic fluorophores labeling
the protein molecules. Our single-particle, double-tag imaging
technique further allows selecting in situ NPs coupled to the desired
number of proteins, a feature essential for cell imaging and
biological assay experiments. Indeed, we can envisage measuring
the photobleaching steps of the organic fluorophore and then
selectively analyzing trajectories or other features of only those
nanoparticles coupled, for instance, to a single protein or to two
proteins and even compare the results for different protein-NP
coupling ratios. This approach is applicable to all types of NP labels,
such as semiconductor or metallic NPs, and biomolecules.
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